
N 8 8 - 1 7 2 3 5
Building Validation Tools For KnowledgelBased Systems

R.A. Stachowitz, C.L. Chang, T.S. Stock and J.B. Combs
Lockheed Missiles & Space Company, Inc.

Lockheed Artificial Intelligence Center, OBO-06, B/30E
2100 East St. Elmo Road

Austin, Texas 78744

Abstract
The Expert Systems Validation Associate (EVA), a validation system under development at the Lockheed
Artificial Intelligence Center for more than a year, provides a wide range of validation tools to check the
correctness, consistency and completeness of a knowledge-based system.

Using a declarative meta-language (hgher-order language), we want to create a generic version of EVA
to validate applications written in arbiirary expert system shells.

In this paper we outline the architecture and functionality of EVA. The functionality includes Structure
Check, Logic Check, Extended Structure Check (using semantic information), Extended Logic Check,
Semantic Check, Omission Check, Rule Refinement, Control Check, Test Case Generation, Error
Localization, and Behavior Verification.

.- INTRODUCTION
The glowing reliance on knowledge-based systems (KBS's) in in-
dustry, business and government requires the development of ap-
propriate methods and tools to validate such systems to ensure
their correctness, consistency and completeness. Furthermore, as
these systems become operational, an increasing number of
knowledge engineers will be involved in their development and
maintenance. Hence, insuring the integrity of a particular KBS over
its entire life cycle makes the need for automated validation even
more crucial.

Early attempts at validating KBS's did not progress beyond basi-
cally "syntactic" validation [Nguyen et al. 1985, Nguyen 1987,
Reubenstein 1985, Suwa et al. 1982). Significantly more ad-
vanced validation tools are being built at the Lockheed AI Center
using semantic information and meta-knowledge for KBS valida-
tion [Stachowitz et al. 1987a, 1987bI.

The system under development is called the Expert Systems
Validation Associate (EVA). Our goal is to create a generic version
of EVA whch can validate applications written in arbitrary expert
system shells, such as ART', KEE", OPS5. and others, by map-
ping an application written in any specific shell into internal data
structures In a general and declarative meta-language (higher-
order language).

The purpose of EVA is to imp1 ve the validation process by finding
mistakes and omissions in tKe knowledge base, by proposing
knowledge base extensions and modifications, and by showing the
impact of changes to the knowledge base. In other words, EVA
addresses not only the question "Is a KBS application correct?",
but also the question "Is the knowledge used by the expert for the
application correct?"
In this paper, we outline the architecture and functionality of EVA.
The functionality includes structure check, logic check, extended
structure check (using semantic information), extended logic
check, semantic check, omission check, rule refinement, control
check, test case generation, error localization, and behavior
verification.

EVA ARCHITECTURE
To permit the addition of future functionality EVA is designed to be
a metaknowledge-based system shell. All the validation modules
(checkers) will be built on a unifying, extensible platform. The
unifying architecture will be based upon: (a) A single user interface

'Automated Reasoning Tool, Inference Corporation

Knowledge Engineering Environment, IntelliCorp
..

for all checkers; (b) A single meta-knowledge base for all check-
ers; and (c) A common meta-language for specifying constraints.
The advantages of the architecture are uniformity and extensibility.

We intend to implement all the checkers in Quintus Prolog
[Quintus 19851. That is, information about an application
represented in a knowledge base, algorithms for the checkers, and
domain knowledge will be represented by clauses in Quintus
Prolog. Then, invoking a checker is essentially comparable to
entering a goal (query) in Quintus Prolog. Our selection of Prolog
is based on the following considerations:

(1) The validation of KBS's requires extensive automatic
theorem proving facilities such as a unification subroutine.
Prolog has a built-in automatic resolution-based theorem
prover. By using Prolog we can expedite the development of
EVA.
(2) Maintaining the meta-knowledge base requires the
functionality of a database management system. Prolog
provides a built-in database management system, whch makes
it unnecessary to develop such functionality separately.
(3) The meta-language required for representing validation
criteria as meta-statements can be defined and implemented in
Prolog. This malces it unnecessary to develop a separate
abstract machine to interpret this meta-language.

EVA FUNCTIONALITY
The functionality of EVA, represented by means of a data flow
diagram, is depicted in Figure 1.

An application is written in an object shell, while validation state-
ments for semantic and control constraints. and behavior descrip
tions are written in a very expressive metashell (meta-language).
The metashell will provide many higher-order constructs to support
high-level predicates such as symmernc, nonsymmetnc, transitive,
nontransitive, reflexive, irreflexive, mandatory, synonymous, com-
patible, incompatible, etc.

An analyzer uses conversion algorithms to translate the applica-
tion and the validation statements into the format to be used by the
EVA validation modules; each of which performs a static or
dynamic analysis of the application. The analyzer will build a con-
nection graph from facts and rules in the application. An arc in the
connection graph denotes a match between a literal in the LHS
(Left-Hand Side) of a rule and a literal in the RHS (Right-Hand
Side) of a rule. Note that a fact is considered as a rule consisting
of a RHS only.

For static analysis, EVA will provide the structure checker, logic
checker, extended structure checker, extended logic checker,
semantics checker, omission checker, rule refiner and control
checker. For dynamic analysis, EVA will provide the test case gen-

209

Application
in an Expert

System Shell Constraint, Control, System
and Behavior Designer
Statements

Metaknowledge
Analyzed Application,
Constraints, Controls
and Behaviors in EVA

Data Base Format -- c-
Figure 1. Validation Functionality

Question 1 Question 2

I

Knowledge
Base

Validation

Dynamic e
Analysis

Checking
Correctness

Test Case
Generator

Error
Locator

Behavior
Verifier

Checking Checking
Consistency Completeness

1

Extended
Structure
Checker

Structure Extended
Checker Logic

Checker

Logic Semantics
Checker Checker

Control
Checker

P-
Omission I
Checker

Rule

Knowledge
Acquisition

Refiner

h
I I

+ Static Analysis

Figure 2. Validation Objectives and Functionality
210

erator, error locator and behavior verifier. The validation objec-
tives and functionality of EVA are shown in Figure 2.

Using ART and LISP, we have implemented prototypes of thc
structure checker, logic checker and semantic checker for ART-
based expert systems. We have also implemented considerable
portions of the structure checker and extended structure checker
in Ouintus Prolog. Other modules, and more elaborate functions
for the structure checker, logic checker and semantics checker are
being designed and will be implemented in the future.

We now give detailed descriptions of the EVA modules as follows:

STRUCTURE CHECKER
As discussed before, a knowledge base can be represented by a
connection graph. That is, the connection graph basically shows
the struclure of the knowledge base. The purpose of the structure
checker is to detect any anomalies in the connection graph. For
example, it will identify rules and facts which will never be used,
rules which are superfluous, and rules which possibly lead to an
infinite loop.

Reachability

One type of "common" error is the use of an undefined lieral in the
LHS of a rule. This may occur in top-down and bottom-up
specifications. In the top-down approach, the specifier starts with
the highest modules, planning to define the lower modules after-
wards. However, he may forget them. Therefore, they are left un-
defined. In the bottom-up approach, the lower modules are defined
first. However, when the specifier tries to use them, he may type
the module names incorrectly.

A LHS literal may be undefined because either its predicate is not
defined or it cannot be unified with any RHS literal. In terms of the
connection graph, a literal is undefined if it is not pointed to by any
arc.

Another type of related anomaly is the case where RHS literals are
notJinked to any LHS literals. That is, they are defined but not
used. They are called "unreachable" literals. The presence of the
unreachable literals may indicate some anomalies, namely, omis-
sions. This is analogous to the experience we have with repairing
a car. We may disassemble a carburetor. However, when we put
the parts back again, we may find some parts are left unused.
In terms of the connection graph, a RHS literal is unreachable if
there is no arc going from Il to another literal.

Redundancy

The types of redundancies the structure checker will check are
duplications and subsumptions. The duplication and subsumption
Checks can be done by the same algorithm because duplication is
a special case of subsumption.

Given two rules R1 and R2, if the LHS of R1 subsumes the LHS of
R2, then whenever R2 can be fired R1 also can be fired. There-
fore, any actions in the RHS of R2 which also occur in the RHS of
R l can be eliminated. If after the elimination no actions are left in
the RHS of R2, then R2 can be eliminated.

The following are examples of duplication and subsumption:
Duplication:
male()() A parent(X) +father(X).
parent(Y) A male(Y) +father(Y).
Subsumption:
tenured()() A -staff(X) +university-member(X).
tenured()() + university-member()().

Qc&

In a knowledge base, cycles will m r if recursive rules are used
to define predicates. Some cycles are harmless, while others
cause problems. EVA will identify "potentially bad" cycles.

First, we consider the case where rules are used to define predi-
cates [Chang 1976, 1978, 19811. A predicate is called a basic
predicate if it is used only for representing facts. A predicate is

called a derived predicate if it is defined in terms of basic predi-
cates, or in terms of basic and derived predicates by a rule or a Set
of rules. For example, the prediite "ancestor" may be defined in
terms of the basic predicate "parent" as follows:

parent(X,Y) -+ ancestor(X,Y).
parent(X,Y) A ancestor(Y,Z) -+ ancestor(X,Z).

The first rule is a terminating rule and the second rule is a recur-
sive rule. If the terminating ple is not given by the developer, it will
cause the second rule to fire repeatedly, ie., result in an infinite
loop. Therefore, if EVA finds that cycles of rules are used to
define a derived predicate, it will try to check whether terminating
rules are given.

Second, we consider the case where rules are used to establish
equivalent predicates. For example, consider the following rules:

human()() +person(X).
person()() +human(X).

These two rules result in a cycle. However, the developer may
intend to show that predicates "human" and "person' are equiv-
alent or synonymous. In this case, he should choose one of the
predicates as the standard predicate and delete one of the rules.
Finally, we consider the case where a cycle (loop) is used to per-
form a repeated task in a distributed or non-distributed environ-
ment. In this case, cycles are allowed.

EVA will also check if a knowledge base contains overlapped
cycles (loops) [Chang 19781. A knowledge base with overlapped
cycles is less modularly structured than one without any over-
lapped cycles. Since we can always represent a knowledge base
without using overlapped cycles, we should enforce this software
methodology. This is analogous to structured programming where
(since only single-entry and single-exit statements are allowed)
loops are well structured in structured programs.

LOGIC CHECKER
The logic checker checks if at some particular time inconsistent or
conflicting actions can be triggered by facts in a knowledge base.

For example, consider the rules:
big(X) -+expensive()().
bg(Y) + -expensive(\().

If the fact

is in the knowledge base, then the rules will assert the inconsistent
facts:

big(trUCk)

expensive(truck). - expensive(truck).
On the other hand, consider the iules:

new()() A bg(X) -+expensive(X).
bmken(Y) A big(Y) + -expensive(Y).

Depending upon what setaf facts exists at a particular time, these
two rules may or may not assert inconsistent facts. For example, if
we only have the fa&

new(truck1).

big(truck2).
bQ(tNck1).

brokeIl(truck2).
then the rules will assen the facts

expensive(truck1).
expensive(truck2).

which are not inconsistent. However, if we only have the facts
new(truck1).
big(trudci).
broken(truck1).

expensive(truckl). - expensive(truck1).

then we will get inconsistent facts:

21 1

The question is whether such a set of facts is ever possible. If the
developer thinks it is impossible that an object can be SimUl-
taneOUSly new, big and broken, then the inconsistency m y not
arise. Otherwise, he should be warned. Note that to make sure
that a certain set of facts is impossible, the knowledge base will be
verified by the semantic checker to be discussed later. That is, the
knowledge base will contain "negative" semantic constraints to be
used by the semantic checker. For the above example, the nega-
tive constraint is represented as

Given a set S of rules, the bgic checker finds if there exists a set T
of facts that may lead the rules in S to generate inconsistent facts.
If such a set T exists, the validation system will prompt the
developer if T is possible. If he says that T is impossible, a cor-
responding negative constraint will be added into the knowledge
base.

EXTENDED STRUCTURE CHECKER

The extended structure checker checks for reachability, redun-
dancy and cycles caused by generalization hierarchy or
synonymy.

Most expert system shells support generalization hierarchy based
upon the subclass relationship "isa". For example, if

then "submarine" may not be undefined if "ship" is defined, and
'ship" may not be unreachable if "submarine" is used in a LHS-
literal of a rule.

Similarly, generalization hierarchy can affect the redundancy and
cycle properties of a knowledge base. For example, given the
N l e S

incompatible(new(X), bii(X), broken()()).

submarine Isa ship,

subrnarine(X) +launch(>().
ship()() +launch()().

clearly the second rule subsumes the first one.

Now, let us consider synonymy. An expert system may be
developed by more than one person. Different persons may use
diierent schemas (names or structures) for the same type of ob-
jects. When their knowledge is merged, some standard should be
established. EVA will provide the meta-language to map the
schemas into a standard schema by using rules. For example, if
"sub" and "submarine" are synonymous, and if we choose
"submarine" to be the standard name, then the mapping rule is
given as

Mapping rules map a slot or a function of many slots into a stan-
dad sbt. For example, the slots "year" and "dateof-birth" may be
mapped into the sbt 'age". This mechanism is similar to "view"
definitions in a relational data base.
Once the standard schemas are established, the functionality of
the extended structure checker for the knowledge base is essen-
tially the same as the functionally of the structure checker for the
knowledge base appended by the mapping rules.

EXTENDED LOGIC CHECKER

The purpose of the extended kgii checker is to check for incon-
sistencies and conflicts caused by generalization hierarchy, incom-
patibiltly, or synonymy. If the application contains rules that can
derive contradictory conclusions from the same set of facts with
the properties of generalization hierarchy, incompatibility, or
synonymy, then the application is inconsistent.

Inconsistency Under Generalization Hierarchy

Given the metafact that submarine is a subclass of ship, rules 8
and 9 are inconsistent.

sub()() +submarine()().

Rule 8: E()() A F(X) + -ship(>().
Rule 9: E(Y) A F(Y) +submarine(Y).

Inconsistency Under Incompatibility

Given the metafact that boyand girlare incompatible, rules 10 and
11 are inconsistent.

Rule 10: A(X) A B(X)+boy(X).
Rule 11 : A(Y) A B(Y) A C(Y) + girl(Y).

Inconsistency Under Svnonymy

Given the metafact that submarine and sub are synonymous, rules
12 and 13 are inconsistent.

Rule 12: E()() A F(X)+submarine(X).
Rule 13: E(Y) A F(Y)+ -$ub(Y).

In each of the above examples, the conditions in each of the rule
pairs are exactly the same or one condition is a proper subset of
another. However, the inconsistency can occur in a more general
case. The examples below are in confllct if all of the facts A@),
B(e), C(e), and D(e) are present in the knowledge base at the
same tlme.

Conflict Under Generalization Hierarchy

Given the metafact that submarine is a subclass of ship, rules 14
and 15 are in conflict.

Rule 14: A(X) A B(X)+ ,ship(X).
Rule 15: C(Y) A D(Y)+submarine(Y).

Given the metafact that boy and girlare incompatible, rules 16 and
17 are in conflict.

Rule 16: A()() A B(X)+boy(X).
Rule 17: C(Y) A D(Y) +girl(Y).

Conflict Under Synonymy

Given the metafact that submarine and sub are Synonymous, rules
18 and 19 are in conflict.

Rule 18: A(X) A B(X)+ +ub(X).
Rule 19: C(Y) A D(Y)+submarine(Y).

If the conditions A(X), B(X), C(X), and D(X) can be satisfied by
future facts in the application (recognized from assertions in the
RHS of rules), the bgic checker warns of potential cunflict.

The extended bgic checker will use an algorithm similar to the one
used by the m i c checker. The extended logic checker will first
choose a goal consisting of a complementary pair of RHS literals
or a set of Incompatible RHS literals. It will then try to find a set of
facts from the goal by performing unifications and substitutions on
literals, using rules in the knowledge base as rewriting rules.

EVA provides the meta-predicate "incompatible" for the developer
to specify a set of incompatible literals. It has the following struc-
ture

where L1 ,..., Ln are literals for n equal to 1 or more. The meaning
of this statement is that the conjunction of L1, ..An can not be true
at any time. Incompatible statements are interpreted as "negative
constraints.. In a knowledge base or meta-knowledge base, there
are general and domain-specific negative constraints. The follow-
ing are some examples of incompatibility statements:

means that an atomic formula A and its negation are incompatible.
Note that A may contain a firstorder or higherorder predicate.

(2) incompatible(assert()(), retract(X))
means that asserting and retracting the same fact at the same
time are incompatible, where X is a literal.

incompatible(L1 ,..., Ln),

(1) incornpatile(A, -A)

(3) incompatible(add(O,S,Vl), delete(O,S,V2),
single-value(0,S))

means that adding a value V1 to a slot S of an object 0 and delet-
ing a value V2 from the same slot of the same object are incom-
patible if the slot is a single-valued slot.

(4) incompatible(modify(O,S,Vl), delete(O,S,VP),
single-value(0,S))

means that modifying the value of a slot S of an object 0 to V1
and deleting a value V2 from the same slot of the same object are
incompatible if the slot is a single-valued slot.

212

(5) incompatible(room(X), in(john,X), in(mary,X))
means that for a particular application we have the negative con-
straint "John and Mary can not be in the same room".

means that an object X can not be on itself.
SEMANTICS CHECKER

The semantics checker has two major functions: cnecking facts in
a knowledge base of an application written in the object shell for
violations of the semantic constraints, and checking the semantic
c6nstraints themselves for internal consistency and agreement
with other metaconstraints represented in the metashell.
We can have "positive constraints" and "negative constraints". The
facts in the knowledge base must satisfy the former, but must not
satisfy the latter. The constraints will be stated by using the meta-
predicates of the meta-language. A negative constraint can be
represented by using the meta-predicate "incompatible" as dis-
cussed before. Some of the metapredcates (rneta-relations) for
specifying positive constraints such as range constraints,
minimum/maximum cardinality constraints, legal value constraints.
value compatibility constraints, subrelations, inverses, data types,
etc. are shown below:

(6) incompatible(on(X,X))

(1) bwer-upper(slot, class, lower, upper)
This metarelation defines the legal range of numerical values: the
values for the <slot> of the <class> must be between <lower> and
cupper>. EVA discovers and flags values that exceed these
bounds.
EVA not only checks facts against semantic constraints, but also
checks that the semantic constraints themseives are consistent.
Since a "child" is a "person", the age range of "child" must fall
within the age range of "person". Thus the following semantic
constraints would be inconsistent.

is-a(child, person)
kwer-upper(age, person, 1,110)
lower-upper(age, child, 0,12)

(2) Iogal-veluo(8lot, class, values)
This metarelation defines the legal values of a slot: the values for
the c s b b of the <class> must be l i e d in <values>.

Fqr example, the folbwing semantic constraint
legal-value(gender, student, [male,female,hermaphrodite])

states that the gender of a student must be male, female, or her-
maphrodite. EVA flags any "student" record where "gender has a
nonlegal value.

(3) mbn(mf(domalbl ,..., domaln-n))
This metarelation defines both the number of legal arguments of a
relation <reb and the legal data type of each argument; <domain-
is is either a class of objects or a set of values for i-1 ,..., n.
This kind of semantic constraint is used to permit EVA to enforce
strong data-type checking for relations.
For example, given the two facts

and

and the metafact
relation(murderer-of(person,pemn))

EVA flags as erroneous the fact
murderer-of(chadie,snoopy).

Another example of constraints
relation(enmH(freshman,{mathlOl,englishlOl, ...)))
relatkn(enroU(sophomore,(math201 ,mol ,...)))

person(charli)

dog(sno0PY)

states that a freshman can only enroll in MathlOl, EnglishlOl, ...
that a sophornore can only enroll in Math201, Art201, ..., and so
on.

(4) mln-max-rel(relatlon, domain, mln, max)
This metarelation specifies the minimum and maximum number of
tuples (records) of a relation: the number of records of <relation>
with object in <domain> must be between <min> and <max>.

For example, the following semantic constraint

means that up to 5000 student enrollments are allowed in the data
base at any one time. The enrollments are represented by
records or tuples of the relation "enroll".

(5) mln-maw-role(nlation, domaln, mln, maw)
This metarelation defines that each object in <domain> must have
at least cmin> and at most <max> objects for the relation
<relation>.
Thus the semantic constraint

states that each sophomore must enroll in at least 3 and at most 4
courses. EVA flags any sophomore who enrolls in fewer than
three or more than four courses.

(6) subrelatlon(relatlon1, nlatbn2)
This metarelation defines that <relatiinl> is a subrelation of
crelation2>. EVA checks that the number of arguments for
crelationb is greater than or equal to the one for <relation2>, and
that the data types of the arguments of crelatbnlr are subclasses
of the corresponding arguments of <relation2>.
For example, EVA determines that the semantic constraints

min-max-rel(enroll, student, 0,5000)

min-max-role(enroll, sophomore, 3,4)

relation(killer-of (animate-obj, animate-obj))
relation(murderer-of (person,thing))
subrelation(murderer-of, killer-of)

are inconsistent since the second argument "thing" of
"muraerer-of" is not a subclass of the second argument
"animate-obj" of "killer-of".
EVA also checks that the inverse of <relatiinl> is a subrelation of
the inverse of <relationb, and creates the missing inverse of a
subrelation, if one does not exist.

Cur meta-language will also permit the developer to define
properties of predicates or relations, such as transitive, nom
transitive, symmetrk, non-symmetric. reflexive, irreflexive,
antonymous (male-female, ie., non-male implies female and vice
versa), contrary (youngold, ie., non-young does not imply old),
etc.

OMISSION CHECKER
Knowledge can be orghred around the concept of set, eg., a
class of objects, a class of relations, a class of rules, and a set of
values for a multi-value slot. Given a set written by the developer,
the basic question to ask is "Is the set complete?". In other words,
does the set contain all the necessary elements or lack some ele-
ments? The goal of the omission checker is to answer this ques-
tion by investigating and Mentlfying useful techniques and
representations for defining completeness of a knowledge base.
Some of these techniques are given as follows:
(a) Class Taxonomy
ll the developer creates only the classes for BOY, MAN and
WOMAN,

PERSON(sex:{ male,female),age:lnteger)
>>> BOY(sex=male,ages 12)
>>> MAN(sex=male,age > 12)
>>> WOMAN(sex=female,age > 12)

(where the classes are wriien in upper case, the slots in lower
case, and the subclass relationship is denoted by >>>,) then the

213

omission checker will prompt him if there should be a class for
persons who are female and not older than 12.

(b) Relation Taxonomy

Given a knowledge base as shown below,
PERSON >>> MAN

>>>WOMAN

PARENT-OF(person,pern)
V
V
V

FATHER-OF(man,person)
the omission checker will find that the taxonomy for PARENT-OF
is incomplete because the PERSON class for the first argument of
PARENT-OF seems to split into the MAN and WOMAN classes.
Therefore, it will prompt the developer whether there should be
another subrelation of PARENT-OF that holds between WOMAN

(c) Omlsslon of Rules Or Facts

Arguments of predicates may be associated with classes. By
analyzing and comparing the arguments, the omission checker
may detect that certain facts or rules for some classes are miss-
ing.

Consider the following knowledge base:

and PERSON, namely, MOTHER-OF.

PERSON>>>ADULT>>>WOMAN
>>>MAN

>>>CHILD >>>GIRL
>>>BOY

GO(passenger,from,to).

TAKE(passenger,fligMfare).

DEPARTMENT(department-name,floor).

ADULT(x) A GO(x,austin.atlanta) 4 TAKE(x,f#7,150)

CHILD(x) A GO(x,austin,atlanta) +TAKE(x,f#7,75)

DEPARTMENT(man,P).

DEPARTMENT(woman,l).

If we look at the rules defining TAKE, we know the domain for the
first argument of TAKE is the union of ADULT and CHILD, namely,
PERSON. However, the domain for the first argument of
DEPARTMENT is the union of MAN and WOMAN, namely,
ADULT. The idea of checking missing rules or facts is to find the
minimal class that is the domain for some argument of a predicate.
If two minimal classes are related by the subclass relationship,
then the rule or fact set associated with the smaller minimal class
is likely to be incomplete. For the above example, the fact Set for
DEPARTMENT is incomplete. That is, the omission checker will
prompt the developer on which floor the "child" department is.
(d) Incomplete Slot Values

There may be a set of typical objects for a slot of an object. For
example, a room is a complex object that contains many other
objects as parts. The mom can be represented by a schema which
has a slot named "containing". A value of this slot is a set of other
objects, typically such as table, chair, board, PC, etc. These typi-
cal pa& of an object can be stored in the meta-knowledge base.
When a specific object is created and it does not contain some of
the typical parts, the omission checker will tell the developer.

RULE REFINER

A rule may be too general or too restrictive. Specific test cases will
be chosen from the knowledge base to prompt the expert if the
rule should apply to the test cases. Any "no" answer will indicate
that the rule is too general, and more specific rules will be

proposed. If he answers "yes" to all the test cases, it may indicate
that the rule is too restrictive, and other test cases in sibling
classes of the generalization hierarchy will be chosen.

Consider a knowledge base given as follows:
PERSON>>rMAN--MAN(Sam,22,USA)

---MAN(Ted,42,USA)
--MAN(Rayd2,France)

>>>WOMAN---WOMAN(Sara,37,USA)

where the schema for PERSON is
PERSON(name,age,place-of-birth).

If we have the following rule saying that every man can be the
president of USA

then the rule refiner will test the rule by presenting some instances
of MAN and asking the developer if Sam, Ted and Ray can be the
president of USA. The answer will be "no" for Sam and Ray, and
'yes" for Ted. Since there are "no" answers, the rule is too
general, so that the developer will change the rule to

MAN(x) A rage(x,35) A place-of-birth(x,USA)

MAN(x) 4 CAN-BE-PRESIDENT-OF-USA(x),

4 CAN-BE-PRES1 DENT-OF-USA(X).
Now, the rule refiner will test the modified rule by presenting an
instance of WOMAN and ask if Sara can be the president of USA.
The answer will be "yes". This means that the modified rule is too
restrictive. Therefore, the rule will be changed to

PERSON(x) A rage(x,35) A place-of-birth(x,USA)
+ CAN-BE-PRESIDENT-OF-USA(x).

The goal of the rule refiner is to help the developer refine his rules.
Since this is an interactive process, a good and comprehensive
user interface is required.

CONTROL CHECKER
As larger knowledge bases for complex applications are imple-
mented, some software engineering methodology [Jacob and
Froscher 19861 should be developed. One method is to partition a
large knowledge base into smaller subsets of facts and rules.
These subsets can be labeled by meaningful names such as ac-
tivity names. Conversely, we can start with the activity names and
then implement each activity by a set of facts and rules.
The implicit execution model of a knowledge-based system is
given as follows: A rule has a RHS and LHS. The rule will be fired
if the LHS is satisfied by the knowledge base. When the rule is
fired, the RHS tells the system to add, change or delete facts and
objects.
In an application, there may be "ordering" constraints (called con-
trol constraints) among the activities. The control checker permits
the developer to specify the control constraints, and then verify if
rules in a knowledge base will be executed in a sequence that
does not violate the control constraints. For example, in an office
system, there are the activities for clearing and publishing papers.
An ordering constraint is that a paper must be "cleared" before it is
"published". Assume the activities are specified as follows:
CLEARING-ACTIVIW:

PUBLISHING-ACTIVIW:

EVA will recognize that the control constraint is violated because
there are no data dependencies between these two activities. That
is, there are no RHS-literals in the first activity used in the LHS of
the rule in the second activii.

TEST CASE GENERATOR

As discussed before, a knowledge base consisting of facts and
rules can be represented by a connection graph. In the connection
graph, there are two kinds of leaf nodes, namely, input nodes and
output nodes. An input node is a node representing a fact that is
connected to LHS-literals of some rules. An output node is a node
representing a RHS-literal that is not connected to any LHS-
literals.

paper(X) A approved(X) +cleared(X).

paper(>() A accepted()() +publish(X).

214

There are two ways to test the knowledge-based system. One ap-
proach is to generate different sets of input nodes (i test
cases) to exercise the system and observe data produced at the
output nodes. The goal is to traverse each arc in the connection
graph at least once. The input test cases must satisfy semantic
constraints that are imposed on the system.

The other approach is to specify requirements on data at the out-
put nodes. Each requirement will be represented as a query. EVA
will check that all input facts will satisfy all the queries.

Consider an example where the speed of an engine is controlled
by the position of a valve of a fuel system. A value of the position
and a value of the speed are input and output data, respectively.
We may generate different values of the position and observe the
values of the speed. On the other hand, we can specify that the
speed should fall within a certain range and then check if such a
requirement can be fulfilled.

ERROR LOCATOR
The error locator is to locate "incorrect" rules which derive
"incorrect" facts from input facts. For example, consider an adder
that is specified by the following rule:

input(1 ,N,V1) A input(S,N,VO) A adder(N)
+ output(N, Vl+V2).

The adder has two input ports 1 and 2. It takes values V1 and V2
at the input ports, and produces the sum of the values at its output
port. lf we have the following input facts for adder a

input(1 ,a,10)
iwt(2,aSO)

output(a.60).

input(l,N,Vl) A input(l,N,V2) A adder(N)
+ output(N, Vl+V2),

the system will produce the incorrect output

To help the developer, the emr kcator will present him the deduc-
tion tree of the incorrect fact so that he can debug it. For the above
example, the deduction tree uses only one fact, namely,
input(l,a,lO), with the rule. This should give the developer the
necessary hint to correct the incorrect rule.

BEHAVIOR VERIFIER
A system may be decomposed into many subsystems. A subsys-
tem may be represented by a collection of facts and rules in the
object shell. However, the subsystem must have external
inpuVoutput interfaces to communicate with the outside world. For
example, in the space shuttle flight software System, the naviga-
tion controller is a subsystem that sits in a control loop, collects
and analyzes data, and then sends control signals to the vehicle
manipulator.

The behavior of the subsystem is a description of relationships
among the external inpuVwtpul interfaces and internal states of
the subsystem. The subsystems are connected together to form
the total system. The purpose of the behavior verifier is to prove
that the intended behavior of the system can be derived from the
behaviors of the subsystems and the description of their connec-
tions.

CONCLUSION
This paper has described the architecture and functionality of
EVA. It is evident that EVA provides a powerful means for
representing knowledge about an application domain and for
verifying that the knowledge is correct, consistent and complete.
EVA increases the reliability of knowledge-based systems, speeds
up their development, and assists in their continuing modification.
The necessity for such validation tools will continue to grow as
future knowledge-based systems play a more critical role in busi-
ness, industry, government, and the sciences.

the system should produce

Now, if the adder is specified by the incorrect rule

output(a,20).

ACKNOWLEDGMENTS
The authors would like to thank Linda B. Bunis of Lockheed M l f C
cia1 Intelligence Center for her careful reading of the paper and
many useful comments.

REFERENCES
Chang, C.L. (19761 DEDUCE -- A deductive query language for
relational data bases, in Panem Recognition and ArMcial
/nt@/l&enCe (C.H. Chen. Ed.), Academic Press, Inc., New York,

Chang, C.L. [1978] DEDUCE 2: Further investigations of deduc-
tion in relational data bases, in Logic and Data Bases(H. Gallaire
and J. Minker, Eds.), Plenum Publishing Cop., New York, 1978,

Chang, C.L. [1981] On evaluation of queries containing derived
relations in a relational data base, in Advances in Data Base
Theory -- Volume 1 (H. Gallaire, J. Minker and J.M. Nicolas, Eds.)
Plenum Publishing Cop., 1981, pp.235-260.

Jacob, R.J.K., and Froscher, J.N. [1986] Deve/oping a sot'rware
engineering methodology k?r knowledge-based systems, NRL
Report 9019, Computer Science and Systems Branch, Information
Technology Division, Naval Research Laboratory, Washington,

Nguyen, T.A. [1987] Verifying consistency of production systems,
Pm. b f the 3d /E€€ Confere&% on A/ Ap@i@tiOnS, February
1987, pp.4-8.

Nguyen, T.A., Perkins. W.A., Laffey, T.J., and Pecora, D. [19851
Checking an expert systems knowledge base for consistency and
completeness, Pm. of the 9th lntemational Joint Conferem9 on
Ariificial Intelligence. 1985, pp.375-378.

Quintus [lW] Quintus Prolog Reference Manual, Quintus Com-
puter Systems, Inc., 2345 Yale Street, Palo Alto, CA 94306.

Reubenstein, H.B. [19sS] OPMAN: An O P S rule base editing and
maintenance package, MIT Master's thesis, MIT, AI Laboratory,
545 Technology Square, Cambrideg, Ma 02139.

Stachowftz, R.A., and Combs, J.B. [1987a] Validation of Expert
Systems, Prvc of Lhe 20th Hawaii lntemational Conference on
Systems Sciences, 1987, pp.686-695.
Stachowitz, R.A.. Combs, J.B., and Chang, C.L. [1987b] Valiation
of KnowledgeBased Systems. Pm. of the 2nd AIAANAWSAF
Synposium on Automation, Robollcs and AtIVamxd Conputling
for the National Space Program, Arlington. Virginia, March 9-11,
1987.
Suwa. M., Scott. A.C.. and Shortliie. E.H. [1982] An approach to
verifylng completeness and conslstency in a rubbased expert
system, The AI Magazihe, 1982, pp.16-21.

THE AUTHORS
Dr. Stachowitz recelved his Ph.D. in Linguistics from the UniVersity
of Texas at Austin in 1969. His background includes design and
development of a law-scale knowledgebased mechanical t m -
lation system, computer hardware and software performance
evaluation, and research in appliitive programming languages,
semantic data models, and analytic modeling and performance
evaluation of data base machine architectures. He also has per-
formed research in bgii and functional knowledge base manipula-
tion and query languages. He is currently a research scientist at
Lockheed's Artiiicial Intelligence Center where he is the co-
principal investigator of the Knowledge-Based Systems Validation
project, the topic of this paper.

Dr. Chang received his Ph.D. in Electrical Engineering from the
Unlversity of Calilomia, Berkeley, CA in 1967. His background in-
cludes design and developemnt of large-scaled knowledge-based
systems, and research in program generation, very high level lan-
guages, compilers, rapid prototyping, relational data bases, natural
language query systems, mechanical theorem proving, and pat-

1976, pP.108-134.

pp.201-236.

D.C. 20375-5000.

215

tem recognition. He wrote two books "Symbolic Logic and
Mechanical Theorem Proving" and "Introduction to Artificial Intel-
ligence Techniques", and published more than 50 papers. H0 is
currently a co-principal investigator of the Knowledge-Based
Validation project.

Todd Stock received his B.A. in Computer Science from the
University of Texas at Austin in 1986. He worked for the UT CS
department doing research and implementation of artificial intel-
fiience and machine learning systems under Dr. Bruce Porter. He
is currently at Lockheed's Anificial InteUigence Center where he is

implementing the Knowledge-Based Systems Validation project in
Prolog.

Ms. Combs received her M.S. in Computer Science/Mathematics
from the University of Texas at Dallas in 1984, where she was
awarded a research assistantship in ttie area of attificial intel-
ligence. She was a member of the technical staff of the Corporate
Engineering Center at Texas Instruments in Dallas, where her
work included the design and development of process control
knowledge-based systems and expert system shells. She is
presently working at Lockheeds Artificial Intelligence Center
where she is the associate principal investigator on the
Knowledge-Based Systems Validation project.

216

